

Scenario #1

Indicates water is potentially diverted into wetlands and flowing to Galveston Bay through Old River and delta.

EXPLANATION

Upstream streamgage

Wallisville streamgage

Indicates water may flow into wetlands and released into main channel of Trinity River when flows are decreasing.

Highest streamflow measured at Wallisville site: 24,000 ft³/s

28 to 82 percent of the flow measured upstream

PROJECT TASKS

Main task: Analysis of streamflow and nutrient and sediment concentrations in the lower Trinity River watershed

- Operation and maintenance of index-velocity gage at Trinity River at Wallisville, Tex. and periodic water-quality sample collection.
- 2. Streamflow measurements and water-quality sample collection at Old River and Wallisville site during high flows.
- 3. Examine streamflow and water-quality from Lake Livingston to the lower parts of the watershed.

Task 1: Periodic water-quality sample collection and operation and maintenance of index-velocity gage at USGS station 08067252 Trinity River at Wallisville, Texas.

Water-Quality

- Nutrients
 - Ammonia
 - Nitrate
 - Nitrite
 - Total nitrogen
 - Total phosphorus
 - Orthophosphate
 - Total organic carbon
 - Dissolved organic carbon
- Water-quality properties
 - Temperature
 - pH
 - Dissolved oxygen concentration
 - Turbidity
 - Specific conductance
- Suspended-sediment

ACOUSTIC SURROGATE FOR SUSPENDED-SEDIMENT

ACOUSTIC SURROGATE FOR SUSPENDED-SEDIMENT

Estimates of suspendedsediment concentrations every 15-minutes.

National Real-Time Water Quality:

https://nrtwq.usgs.gov/

Task 2: Streamflow measurements and water-quality sample collection at Old River and Wallisville site during periods of high flow

USGS 08067252 Trinity Rv at Wallisville, TX

STREAMFLOW SUMMARY

Streamflow (in cubic feet per second) measured at:

Date	Trinity River at Liberty	Trinity River at Wallisville	Old River Lake	Wallisville + Old River	Difference in streamflow
6/10/2015	60,000	21,600	44,300	65,900	5,900
3/17/2016	52,000	22,700	34,800	57,500	5,510
4/26/2016	32,000	17,200	7,360	24,600	-7,440
6/3/2016	81,000	22,300	62,700	85,000	4,950

Storage in wetlands?

Timing of sample collection and previous conditions matter

STREAMFLOW SUMMARY

Peak flow at Liberty site: 52,000 ft³/s Streamflow measured at Old River and Wallisville site add up.

USGS 08067252 Trinity Rv at Hallisville, TX

4/26/2016

Period of provisional data

Measured discharge

Apr

30

2016

Peak flow at Liberty site: 32,000 ft³/s Streamflow measured at Old River and

30000

20000

10000

Discharge

Period of approved data

What does this mean for water-quality? Old River at I-10 Wallisville streamgage Old River—Trinity confluence

SELECTED NUTRIENTS

	Total Nitrogen		Nitrate + Nitrite		Total Phosphorus	
	(mg/L)		(mg/L as N)		(mg/L)	
Date	Old River	Wallisville	Old River	Wallisville	Old River	Wallisville
3/17/2016	1.19	1.25	0.663	0.650	0.122	0.129
4/25/2016	1.17	1.16	0.387	0.437	0.142	0.145
6/3/2016	0.87	0.82	0.302	0.230	0.120	0.131

^{*}Preliminary data, subject to revision

SUSPENDED-SEDIMENT

	Suspended-sediment concentration (mg/L)		Percentage of silt and clay		
			sediment particles		
Date	Old River	Wallisville	Old River	Wallisville	
3/17/2016	43	145	99	60	
4/25/2016	52	158	100	67	
6/3/2016	41	134	100	67	

^{*}Preliminary data, subject to revision

- Suspended-sediment concentrations and size distribution different between Old River and Wallisville site.
- Suspended-sediment concentrations measured at Wallisville, Liberty, and Romayor sites may not be representative of inflow to bay.

SUSPENDED-SEDIMENT

Li	berty site	Wallisville site		
	Suspended-sediment		Suspended-sediment	
Date	concentration (mg/L)	Date	concentration (mg/L)	
3/16/2016	200	3/17/2016	145	
4/20/2016	438	4/25/2016	158	
6/1/2016	350	6/3/2016	134	

^{*}Preliminary data, subject to revision

- Floodplain or channel retention of suspended-sediment?
- Continuous suspended-sediment record provides information on peak suspended-sediment concentration at Wallisville site

Task 3: Examine streamflow and water-quality from Lake Livingston to the lower portions of the watershed.

SUMMARY

- Flow in the lower Trinity River watershed does not follow the expected pattern:
 - A large part of the water volume (during high-flow events)
 enters Galveston Bay through Old River, including a portion of
 the volume measured at Wallisville site.
- Suspended-sediment transport to Galveston Bay may be affected by these flow patterns.
 - We need more data to statistically determine if this is the case.

WHAT'S NEXT?

- Continue O&M of index-velocity streamgage and suspendedsediment rating at Wallisville site.
- Collect water-quality samples and conduct discharge measurements:
 - at target flows of 15-20k ft³/s and 35-50k ft³/s and
 - during events with varying antecedent conditions.
- Collect water-quality samples at additional locations:
 - mixing point between Old River and Wallisville site
 - downstream from saltwater barrier
- Examine spatial trends in water-quality in lower Trinity River watershed.

U.S. Geological Survey Texas Water Science Center Gulf Coast Program Office

Zulimar Lucena <u>zlucena@usgs.gov</u>

Michael T. Lee mtlee@usgs.gov